GCE MARKING SCHEME

SUMMER 2016

PHYSICS PH4 1324/01

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE PHYSICS PH4
SUMMER 2016 MARK SCHEME

Question			Marking details	Marks Available
1	(a) (b)	(i)	The rate of change of momentum of an object is (directly) proportional to the resultant / net / total / overall (1) force acting on it (1) [and is in the direction of that force] Award 1 mark for stating $F=m a$ with all terms correctly identified	2
		(ii)	The [vector sum of the] momenta of bodies in a system stays constant (1) [even if forces act between the bodies], provided there is no [net] external [resultant] force / isolated system (1)	2
		(i)	$\begin{aligned} & \text { Conservation of momentum: idea of }(1) \\ & m_{A} u_{A}+m_{B} u_{B}=m_{A} v_{A}+m_{B} v_{B} \\ & (0.12)(2.40)+(0.24)(-1.70)=(0.12)(-2.24)+(0.24) v_{B} \\ & (0.24) v_{B}=0.1488 \\ & v_{B}=0.62\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \end{aligned}$	3
		(ii)	Energy considerations Energy lost $=$ Initial kinetic energy - Final kinetic energy $=\left(\frac{1}{2} m_{A} u_{A}^{2}+\frac{1}{2} m_{B} u_{B}^{2}\right)-\left(\frac{1}{2} m_{A} v_{A}^{2}+\frac{1}{2} m_{B} v_{B}^{2}\right)$ idea and formulation of energy lost (1) $\begin{aligned} &=\frac{1}{2}\left(0.12 \times 2.40^{2}+0.24 \times 1.70^{2}\right) \\ &-\frac{1}{2}\left(0.12 \times 2.24^{2}+0.24 \times 0.62^{2}\right) \end{aligned}$ correct substitution, allow ecf from (i) (1) $\begin{aligned} & =0.6924-0.3472 \\ & =0.3452[\mathrm{~J}](1) \end{aligned}$	3
		(iii)	Consider mass m_{A} Force $\times \Delta t=$ change of momentum idea (1) Force $\times(0.3)=$ final momentum - initial momentum Force $\times(0.3)=m_{A}(-2.24-2.40)$ Force $=\frac{(0.12)(-4.64)}{0.3}=-1.856 \mathrm{~N}$ Force of $1.86[\mathrm{~N}]$ (1) to the left accept - sign or arrow (1)	3
			Question 1 Total	[13]

Question			Marking details	Marks Available
2	(a)		The maximum value of the platform's displacement [from its equilibrium (central) position]. Don't accept reference to height	1
		(ii)	The number of cycles / oscillations / vibrations [completed by the platform] per second / rate.	1
	(b)	(i)	$\begin{aligned} & v=\omega A=(2 \pi f) A=(2 \pi(0.5)) 0.03 \text { substitution (1) } \\ & v=0.094\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \end{aligned}$	2
		(ii)	$\begin{aligned} & x=A \sin (2 \pi f t) \text { use of } \omega=2 \pi f \\ & 0.02=0.03 \sin (2 \pi(0.5) t) \text { substitution (1) } \\ & t=0.232[\mathrm{~s}] \text { or } 0.768[\mathrm{~s}](1) \end{aligned}$	
			$\begin{aligned} & v=(2 \pi f) A \cos (2 \pi f t) \\ & v=(2 \pi(0.5))(0.03) \cos (2 \pi(0.5)(0.232)) \\ & v=0.070\left[\mathrm{~ms}^{-1}\right] \text { or }-0.070\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \end{aligned}$	3
		(iii)	$\begin{aligned} & \text { max acceleration }=(2 \pi f)^{2} A=(2 \pi(0.5))^{2}(0.03) \text { subs (1) } \\ & =0.30\left[\mathrm{~m} \mathrm{~s}^{-2}\right] \end{aligned}$	2
	(c)		Contact will be lost when the maximum downward acceleration is equal (or greater) to the acceleration due to gravity, g i.e. when acceleration at top of oscillation $=g$ explanation (1)	
			$\begin{align*} & g=(2 \pi f)^{2} A \text { (implies } 1^{\text {st }} \text { mark) } \\ & 9.81=(2 \pi f)^{2}(0.03) \\ & f=\left(\frac{1}{2 \pi}\right) \sqrt{\frac{9.81}{0.03}}=2.88[\mathrm{~Hz}] \tag{1} \end{align*}$ As frequency is incrementally increased, contact will be lost at $f=3.00[\mathrm{~Hz}]$ answer (1)	3
			[Alternatively for the $2^{\text {nd }}$ and $3^{\text {rd }}$ marks, substitute values and find acceleration for different frequencies. Indicate 2.50 Hz is on lower side of $g(1)$ and 3.00 Hz on higher side.(1)]	
			Question 2 Total	[12]

Question		Marking details	Marks Available
5	(a) (b)	$g_{M}=\frac{G M}{R_{M}^{2}}=\frac{\left(6.67 \times 10^{-11}\right)\left(7.34 \times 10^{22}\right)}{\left(1.74 \times 10^{6}\right)^{2}}=1.62\left[\mathrm{~N} \mathrm{~kg}^{-1}\right]$ substitution (1); answer (1) Total energy at surface $=-\frac{G M m}{R_{M}}+\frac{1}{2} m v^{2} m$: mass of projectile $\begin{equation*} =-\frac{\left(6.67 \times 10^{-11}\right)\left(7.34 \times 10^{22}\right) m}{\left(1.74 \times 10^{6}\right)}+\frac{1}{2} m(400)^{2} \tag{1} \end{equation*}$ Total energy at highest altitude $=-\frac{G M m}{r_{M}}$ $\begin{equation*} =-\frac{G M m}{r_{M}}=-\frac{\left(6.67 \times 10^{-11}\right)\left(7.34 \times 10^{22}\right) m}{r_{M}} \tag{1} \end{equation*}$ Conservation of energy: application (1) $\begin{align*} & -\frac{\left(6.67 \times 10^{-11}\right)\left(7.34 \times 10^{22}\right) m}{\left(1.74 \times 10^{6}\right)}+\frac{1}{2} m(400)^{2} \\ & =-\frac{\left(6.67 \times 10^{-11}\right)\left(7.34 \times 10^{22}\right) m}{r_{M}} \\ & -\frac{\left(6.67 \times 10^{-11}\right)\left(7.34 \times 10^{22}\right)}{\left(1.74 \times 10^{6}\right)}+\frac{1}{2}(400)^{2} \\ & =-\frac{\left(6.67 \times 10^{-11}\right)\left(7.34 \times 10^{22}\right)}{r_{M}} \\ & -2813666.667+80000=-\frac{4.89578 \times 10^{12}}{r_{M}} \\ & -2733666.667 r_{M}=-4.89578 \times 10^{12} \\ & r_{M}=\frac{\left(4.89578 \times 10^{12}\right)}{2733666.667}=1790.921 \times 10^{3} \mathrm{~m} \tag{1} \end{align*}$ above surface $h=1790.921-1740=50.9[\mathrm{~km}]$ [with rounding.: $-2.814 \times 10^{6}+80000=-\frac{4.896 \times 10^{12}}{r_{M}}$ $r_{M}=\frac{4.896 \times 10^{12}}{2.734 \times 10^{6}}=1790.8 \times 10^{3} \mathrm{~m}$	$2{ }^{2} 80$
	(c) (d)	$\begin{align*} & \frac{1}{2} m v^{2}=m g_{M} h \\ & h=\frac{v^{2}}{2 g_{M}}=\frac{400^{2}}{2(1.62)}=49382.716 \mathrm{~m}=49.4[\mathrm{~km}] \tag{1} \end{align*}$ $\text { percentage difference }=\frac{(51-49.4)}{51} \times 100 \%=3 \%$ formula for percentage error (1), result (1)	2
	(e)	Yes, as it is likely that the percentage difference is less than the uncertainty because of the measurement of the velocity or suitable alternative. ecf for consistency Answer to (e) must be consistent with answer to (d)	1
		Question 5 Total	[11]

